Adding \& Subtracting positive and negative numbers
 SAME SIGN ADD
 DIFFERENT SIGN SUBTRACT

Multiplying \& Dividing positive and negative numbers SAME SIGN POSITIVE +
 DIFFERENT SIGN NEGATIVE -

Simplifying Fractions

Find a number that can be divided evenly in both numerator and denominator. Keep doing this until you can no longer divide, that's when it is simplified.
$\frac{10}{25 \div 5} \div \frac{2}{5} \quad \frac{6}{8} \div 2=\frac{3}{4} \quad \frac{8}{24} \div 8=\frac{1}{3}$

Exponents

ADD exponents, \rightarrow multiplying SUBTRACT exponents \rightarrow dividing
$(-2)^{3}=(-2) \cdot(-2) \cdot(-2)=-8$
$8 x^{2} \cdot 3 x^{5}=8 \cdot 3 \cdot x^{2+5}=24 x^{7}$ $\frac{12 a^{5}}{3 a^{2}}=4 a^{5-2}=4 a^{3}$

$$
\begin{gathered}
\mathbf{5}+\mathbf{3} \text { same sign add }=\mathbf{8} \\
-\mathbf{5}-\mathbf{3} \text { same sign add }=-\mathbf{8} \\
-\mathbf{5}+(-3) \text { same sign add }=-8 \\
-5+\mathbf{8} \text { different sign subtract }=-2 \\
\text { (the sign on the bigger number = sign of answer) }
\end{gathered}
$$

$\mathbf{5 - (- 3)}$ same sign add $=\mathbf{8}$
$5++3$ same sign add, equals positive 8

5-3 different sign subtract = 2 (the sign on the bigger number = sign of answer)
-5 - (-3) different sign subtract= - 2 $-5++3$ diff sign subtract, larger number $(-)$, ans $(-)$
$\mathbf{5 + - 3}$ different sign subtract $=\mathbf{2}$ (the sign on the bigger number $=$ sign of answer)

$$
\mathbf{6} \mathbf{x} \mathbf{7} \text { same sign }+=+\mathbf{4 2}
$$

$-6 \mathbf{x - 7}$ same sign $+=+42$
6×-7 different sign $-=\mathbf{- 4 2}$
-7×6 different sign - = - 42

Distributive Property

Distribute (or multiply) the term outside the parentheses times EACH TERM INSIDE THE PARENTHESES.
$5(x+1)=5 \cdot x+5 \cdot 1=\mathbf{5 x}+\mathbf{5}$
$y(2 y-3)=y \cdot 2 y+y \bullet(-3)=\mathbf{2} \mathbf{y}^{\mathbf{2}} \mathbf{- 3} \mathbf{y}$
$12\left(a^{2}+5 b\right)=12 \cdot a^{2}+12 \cdot 5 b=\mathbf{1 2 a}{ }^{2}+\mathbf{6 0 b}$
Addligend Subtracting Variables
Only add and subtract LIKE TERMS
Examples of "like terms":
4x, -10x, 100x, -3x "like term" $4 a b,-10 a b, 100 a b,-3 a b a b$
$4 y,-10 y, 100 y,-3 y \quad y$
$4 x^{2},-10 x^{2}, 100 x^{2},-3 x^{2} \quad x^{2}$
VTuliplivingand Dividing Vardeles
UNlike terms can be multiplied and divided. Multiply and divide whole numbers separate of the variable.

ADD exponents when multiplying SUBTRACT exponents when \div @CuteCalculus

Multiplying Fractions

Multiply top • top, bottom • bottom.

$$
\begin{aligned}
& \frac{5}{6} \times \frac{4}{7}=\frac{20}{42 \div 2} \div 2=\frac{10}{21} \\
& \frac{2}{9} \times \frac{3}{8}=\frac{6}{72 \div 6} \div 6=\frac{1}{12}
\end{aligned}
$$

Exponents Raised to Exponents

MULTIPLY exponents when raised to another exponent.

$$
\begin{aligned}
& \left(4 x^{3}\right)^{2}=4^{2} \cdot x^{3 \cdot 2}=16 x^{6} \\
& \left(8 y^{5}\right)^{3}=8^{3} \cdot y^{5 \cdot 3}=512 y^{15}
\end{aligned}
$$

$$
\begin{aligned}
& 42 \div 7 \text { same sign }+=+6 \\
& -42 \div-7 \text { same sign }+=+6 \\
& 42 \div-7 \text { different sign }-=-6 \\
& 42 \div-6 \text { different sign }-=-7
\end{aligned}
$$

Order of Operations

PEMDAS

Please (Parentheses)
Excuse (Exponents)
My (Multiplication)
Dear (Division)
Aunt (Addition)
Sally (Subtraction)
Multiplication and
Division are done left to right.

Addition and
Subtraction are
done left to right.
$4 x-10 x=-6 x$
$4 x-10 y=$ NOT POSSIBLE
$4 a b+100 a b=104 a b$
$4 y-10 y+100 y=94 y$
$4 x^{2}+100 x=$ NOT POSSIBLE
$4 x^{2}-3 x^{2}=1 x^{2}$
$2 x \cdot 3 x^{2}=2 \cdot 3 \cdot x^{1+2}=\mathbf{6} \mathbf{x}^{\mathbf{3}}$
$5 y^{4} \cdot 6 x^{2} y^{3}=5 \cdot 6 \cdot x^{2} \cdot y^{4+3}=\mathbf{3 0} \mathbf{x}^{2} \boldsymbol{y}^{7}$
$4 a^{3} \div a^{2}=4 a^{3-2}=4 a^{1}$
$8 x^{5} \div 2 x^{3}=4 x^{5-3}=4 x^{2}$
$18 x^{2} y^{3} \div 3 y=6 x^{2} y^{3-1}=\mathbf{6} x^{2} \mathbf{y}^{2}$

Dividing Fractions

Flip the second fraction and multiply.
$\frac{6}{7} \div \frac{3}{5}=\frac{6}{7} \times \frac{5}{3}=\frac{30 \div 3}{21 \div 3}=\frac{10}{7}=1 \frac{3}{7}$
$\frac{8}{9} \div \frac{4}{7}=\frac{8}{9} \times \frac{7}{4}=\frac{56}{36} \div 4=\frac{14}{9}=1 \frac{5}{9}$

NEGATIVE Exponents

If a term has a negative exponent and is in the numerator, move it to the denominator to become positive. If the term with the negative exponent is in the denominator, move it to the numerator to become positive.
$x^{-2}=\frac{1}{x^{2}} \quad y^{-3}=\frac{1}{y^{3}} \quad \frac{1}{a^{-5}}=a^{5}$
$\left(-2 a^{3}\right)^{-2}=\frac{1}{\left(-2 a^{3}\right)^{2}}=\frac{1}{(-2)^{2} \cdot a^{3 \cdot 2}}=\frac{1}{4 a^{6}}$

	Using slope intercept $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ Write the equation of a line with a slope of 3 and \mathbf{y}-intercept of $\mathbf{- 1}$. $\begin{array}{ll} m=3 & y=m x+b \\ b=-1 & y=3 x-1 \end{array}$	Using point slope $y-y_{1}=m\left(x-x_{1}\right)$ Write the equation of a line passing through the point $(-3,7)$ with a slope of 2 . $\begin{aligned} & m=2 \\ & x, y_{1} \\ & (-3,7) \end{aligned} \quad y-7=2(x+3)$
Step 1, plot \mathbf{y}-int =-4 Step 2, m=2 (rise 2, run 1) Step 3, plot at least 3 points Step 4, draw the line Step 1, plot \mathbf{y}-int = $\mathbf{1}$ Step 2, m=-1/3 (fall 1, run 3) Step 3, plot at least 3 points Step 4, draw the line	Graphing Horizont $\mathbf{y}=$ number is a HORIZONTAL LINE g through the given y-value. This is when slope is ZERO, therefore there is no x $\mathbf{x}=$ number is a VERTICAL LINE going the given x-value. This is when the slope is UNDEFINED or DOES NOT E	
	Finding x-intercept Is where $y=0$, solve. $\begin{align*} & 2 x+6 y=12 \\ & 2 x+6(0)=12 \\ & 2 x=12 \tag{0,2}\\ & 6 \tag{6,0} \end{align*}$	Finding y-intercept Is where $x=0$, solve. $\begin{aligned} & 2 x+6 y=12 \\ & 2(0)+6 y=12 \\ & 6 y=12 \\ & 6 \quad y=2 \end{aligned}$
	$x=$ the solution to the Quadrati quadratic equation. These are also called the "zeros", "x-intercepts", "where the function crosses the x-axis", "the value of the function when $\mathbf{y}=0$." $x=-1, x=1$	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
	Graphing $y>2 x+1$ Step 1, plot \mathbf{y}-int = $\mathbf{1}$ Step 2, m=2 (rise 2, run 1) Step 3, dotted line - - for > Step 4, shade above for >	nequalities $y \leq-\frac{2}{3} x-1$ Step 1, plot \mathbf{y}-int $=\mathbf{- 1}$ Step 2, m=- $2 / 3$ (fall 2, run 3) Step 3, solid line for \leq Step 4, shade below for \leq
Absolute value is the distance from zero, it is Absolute Value Equations always positive so you must account for the possibility that the number inside the absolute $3\|2 x+6\|-7=5$ value could have been negative and therefore get two possible answers. $\|x\|=6$ $\frac{3\|2 x+6\|}{3}=\frac{12}{3}$	Midpoint Formula Midpoint = average of the two points. $\begin{gathered} \left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \\ M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \end{gathered}$	Parallel lines = ARE EQUAL $=$ THE SAME! $\begin{aligned} & y=\mathbf{3} x+8 \text { and } y=\mathbf{3} x-1 \\ & y=-\mathbf{1 / 4} x-5 \text { and } y=-\mathbf{1 / 4} x \\ & y=-x+7 \text { and } y=-x-9 \\ & y=\mathbf{5 x} \text { and } y=\mathbf{5} x+2 \end{aligned}$
$\begin{array}{ll} \|x+1\|=8 \\ x+1=8 & x+1=-8 \\ x=7 & x=-9 \end{array}$ Once the absolute value is isolated, write TWO equations, one written as is and the other $=$ to negative	Distance Formula d = distance between two points. $\begin{gathered} \left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \\ d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \end{gathered}$	Perpendicular lines Opposite sign, flipped fraction $\begin{aligned} & y=\mathbf{3} x+8 \text { and } y=-\mathbf{1 / 3} x-1 \\ & y=-\mathbf{1 / 4} x-5 \text { and } y=4 x \\ & y=-x+7 \text { and } y=x-9 \\ & y=\mathbf{5} x \text { and } y=-\mathbf{1 / 5} x+2 \end{aligned}$

[^0]
[^0]: Tutoring in Pre-Algebra, Algebra I \& II, Geometry, Precal, Calculus - DM @CuteCalculus

