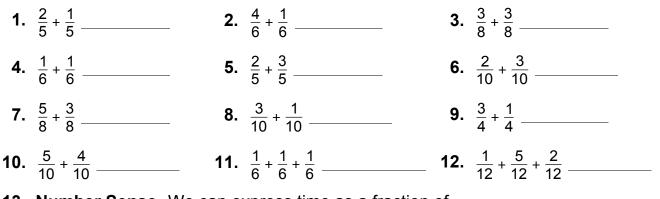

Math Topic 12 Study Guide Modeling Addition of Fractions (12 – 1)

Eight friends want to see a movie. Four of them want to see a comedy. Two want to see an action movie and two want to see a science-fiction movie. What fraction of the group wants to see either a comedy or a science-fiction movie?

You can use a model to add fractions.


Look at the circle. It is divided into eighths, because there are eight people in the group. Each person represents $\frac{1}{8}$ of the group.

Four people want to see a comedy. Shade in four of the sections to represent $\frac{4}{8}$. Two people want to see a science-fiction movie.

Shade in two more sections to represent $\frac{2}{8}$. Count the number of shaded sections. There are six. So, $\frac{6}{8}$ of the group wants to see

 $\frac{4}{8} + \frac{2}{8} = \frac{6}{8}$ Write the sum in simplest form. $\frac{6 \div 2}{8 \div 2} = \frac{3}{4}$

Find each sum. Simplify, if possible.

13. Number Sense We can express time as a fraction of an hour. For example, 15 minutes is $\frac{1}{4}$ hour. 30 minutes is $\frac{1}{2}$ hour. What fraction of an hour is 45 minutes?

Adding Fractions with Like Denominators (12 – 2)

When you add fractions with like denominators, add the numerators and keep the denominator the same.

Find the sum of $\frac{3}{8} + \frac{1}{8}$

Add the numerators. 3 + 1 = 4

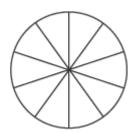
Keep the denominator the same. $\frac{3}{8} + \frac{1}{8} = \frac{4}{8}$

Is this fraction expressed in simplest form?

Remember: a fraction is in simplest form when the greatest common factor (GCF) of the numerator and denominator is 1.

 $\frac{4 \div 4}{8 \div 4} = \frac{1}{2} \quad \frac{1}{2}$ is in simplest form, because the GCF of 1 and 2 is 1.

Find each sum. Simplify if possible.


1.	$\frac{1}{3} + \frac{1}{3}$	 2. $\frac{3}{10} + \frac{6}{10}$	
3.	$\frac{5}{12} + \frac{2}{12}$	 4. $\frac{3}{12} + \frac{7}{12}$	
5.	$\frac{5}{10} + \frac{3}{10}$	 6. $\frac{2}{8} + \frac{4}{8}$	
7.	$\frac{7}{10} + \frac{3}{10}$	 8. $\frac{1}{8} + \frac{6}{8}$	
9.	$\frac{1}{10} + \frac{5}{10}$	 10. $\frac{1}{5} + \frac{2}{5} + \frac{2}{5}$	
11.	$\frac{2}{8} + \frac{1}{8} + \frac{4}{8}$	 12. $\frac{2}{6} + \frac{1}{6}$	

13. Reasoning There were 10 bowling pins standing before Jared took his first turn. On his first turn, he knocked down 5 pins. On his second turn, he knocked down 3 pins. What fraction of the pins did Jared knock down in his two turns?

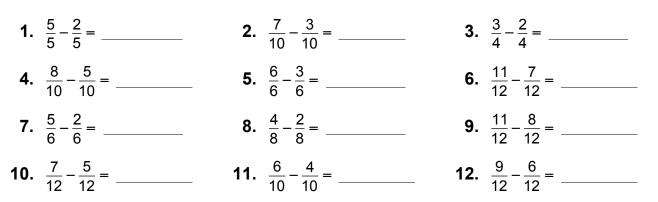
Modeling Subtraction of Fractions (12 – 3)

Karla made a pizza and cut it into 10 slices. She ate two slices. What fraction of the pizza is left?

You can use a model to subtract fractions.

Karla's pizza is divided into 10 slices. One way to show this is $\frac{10}{10} = 1$ whole pizza. Karla ate two slices of the pizza.

Cross out two of the slices. Count the number of slices left.


There are 8 slices or $\frac{8}{10}$ of the pizza left.

 $\frac{10}{10} - \frac{2}{10} = \frac{8}{10}$

Write the answer in simplest form, if possible.

 $\frac{8\div 2}{10\div 2} = \frac{4}{5}$

Use fraction strips or models to subtract. Simplify if possible.

13. Algebra Find x.

$$X - \frac{1}{6} = \frac{1}{6}$$

Subtracting Fractions with Like Denominators (12 – 4)

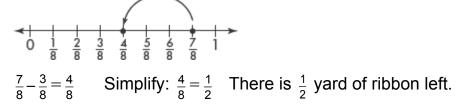
When subtracting with two fractions having the same denominator, the difference also has the same denominator.

Find
$$\frac{7}{8} - \frac{5}{8}$$
.

Step 1:Step 2:Step 3:Subtract the numerators.Write the difference over the
same denominator.Simplify the answer if possible.7-5=2 $\frac{7}{8}-\frac{5}{8}=\frac{2}{8}$ $\frac{2}{8}=\frac{1}{4}$ So, $\frac{7}{8}-\frac{5}{8}=\frac{1}{4}$.

Subtract the fractions. Simplify if possible.

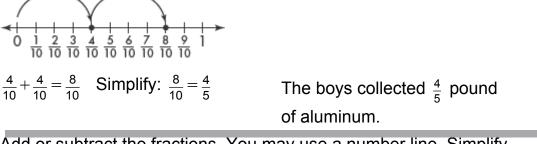
1.	$\frac{4}{5} - \frac{3}{5}$	 2. $\frac{8}{12} - \frac{3}{12}$	
3.	$\frac{3}{6} - \frac{1}{6}$	 4. $\frac{9}{10} - \frac{3}{10}$	
5.	$\frac{11}{12} - \frac{5}{12}$	 6. $\frac{5}{6} - \frac{1}{6}$	
7.	$\frac{97}{100} - \frac{40}{100}$	 8. $\frac{5}{8} - \frac{1}{8}$	
9.	$\frac{7}{10} - \frac{2}{10} - \frac{1}{10}$	 10. $\frac{7}{12} - \frac{4}{12}$	
11.	$\frac{3}{4} - \frac{1}{4} - \frac{2}{4}$	 12. $\frac{8}{8} - \frac{1}{8}$	

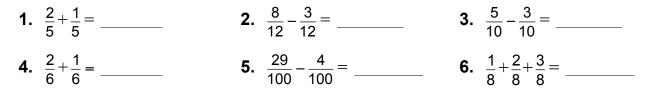

13. Reasoning During archery practice, Manny hit the target 7 times out of 10 tries. What fraction of his arrows did NOT hit the target?

Adding and Subtracting on the Number Line (12 – 5)

Bernadette has $\frac{7}{8}$ yard of ribbon. She cuts off $\frac{3}{8}$ yard to make a collar for her dog. How much ribbon does Bernadette have left?

You can use a number line to help you subtract fractions.


Draw a number line to represent the ribbon. Divide the number line into eighths. Place a point at $\frac{7}{8}$ to show the length of the ribbon before it is cut. Draw an arrow $\frac{3}{8}$ of a unit to the left to show how much of the ribbon Bernadette cut off.


You can also use a number line to help you add fractions.

Kevin and Duane are recycling aluminum cans. Each boy has collected $\frac{4}{10}$ pound. How many pounds have they collected in all?

Divide this number line into tenths. Start at zero and draw an arrow to and place a point at $\frac{4}{10}$ to show the amount of aluminum Kevin collected. Now draw another arrow $\frac{4}{10}$ of a unit long to the right to show Duane's amount.

Add or subtract the fractions. You may use a number line. Simplify your answer, if possible.

Improper Fractions and Mixed Numbers (12 – 6)

You can use fraction strips to write a mixed number as an improper fraction.

 $3\frac{1}{2}$ of the model below is shaded.

1/2	1/2
$\frac{1}{2}$	1/2
1/2	1 <u>2</u>
1/2	1/2

Into how many parts is each strip divided? 2. This is your denominator.

Count the shaded halves. There are 7. This is your numerator.

 $3\frac{1}{2}$ is the same as the improper fraction $\frac{7}{2}$.

You can also use fraction strips to write an improper fraction as a mixed number.

 $\frac{8}{2}$ of the model below is shaded.

1 <u>3</u>	1 3	$\frac{1}{3}$
$\frac{1}{3}$	1/3	$\frac{1}{3}$
$\frac{1}{3}$]	$\frac{1}{3}$

How many strips are completely shaded? 2. This is your whole number.

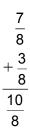
What fraction of the third strip is shaded? $\frac{2}{3}$. This is your fraction.

 $\frac{8}{3}$ is the same as the mixed number $2\frac{2}{3}$.

Write each mixed number as an improper fraction.

1. 2 ¹ / ₃	2. 4 ¹ / ₅	3. 2 ³ / ₄	4. 5 ² / ₆
----------------------------------	----------------------------------	---	----------------------------------

Write each improper fraction as a mixed number or a whole number.

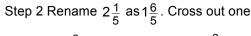

- **5.** $\frac{13}{12}$ **6.** $\frac{50}{10}$ **7.** $\frac{23}{10}$ **8.** $\frac{17}{8}$ **....**
- Writing to Explain Is ⁴⁵/₅ equal to a whole number or a mixed number? Explain how you know.

Modeling Addition and Subtraction of Mixed Numbers (12 – 7)

Example 1: Draw a model to add $1\frac{7}{8} + 2\frac{3}{8}$.

Step 1 Model each mixed number using fraction strips.

Step 2 Add the fractions. Regroup if you can.

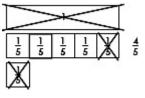


Step 3 Add the whole numbers to the regrouped fractions. Write the sum. Simplify, if possible.

So, $1\frac{7}{8} + 2\frac{3}{8} = 4\frac{1}{4}$.

Example 2: Draw a model to subtract $2\frac{1}{5} - 1\frac{2}{5}$.

Step 1 Model the number you are subtracting from, $2\frac{1}{5}$.


1

1 1 8 8

1

1 1 1 5 whole and $\frac{2}{5}$ to show subtracting $1\frac{2}{5}$.

 $\frac{1}{8}$ $\frac{1}{8}$

Express the part of the model that is not crossed out as a fraction or mixed number. So, $2\frac{1}{5} - 1\frac{2}{5} = \frac{4}{5}$.

Use fraction strips to find each sum or difference. Simplify, if possible.

1. $3\frac{1}{2} + 1\frac{1}{2}$	2. $2\frac{5}{8} + 4\frac{3}{8}$	3. $5\frac{2}{6}+3\frac{5}{6}$	4. $2\frac{2}{4} + 6\frac{3}{4}$
5. $6\frac{1}{8} - 3\frac{5}{8}$	6. $8\frac{3}{12} - 2\frac{5}{12}$	7. $12\frac{1}{3} - 5\frac{2}{3}$	8. $9\frac{7}{10} - 6\frac{9}{10}$

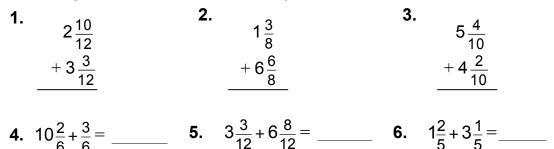
1

1

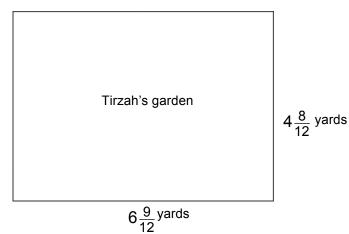
1

Adding Mixed Numbers (12 – 8)

Randy talks on the telephone for $2\frac{5}{6}$ hours, and then surfs the Internet for $3\frac{3}{4}$ hours. How many hours does he spend on the two activities?

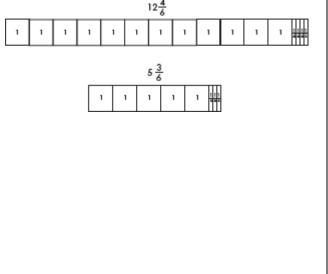

Step 1. Write equivalent fractions with the least common denominator. You can use fraction strips to show the equivalent fractions. $3\frac{3}{4} = 3\frac{9}{12}$ $1 \qquad 1 \qquad 1$ $2\frac{5}{6} = 2\frac{10}{12}$ $1 \qquad 1$ **Step 2.** Add the fraction part of the mixed number first. Then add the whole numbers.

 $\frac{9}{12} + \frac{10}{12} = \frac{19}{12}$ $\frac{19}{12} + 5 = \frac{19}{12}$


Step 3. Simplify the sum if possible.

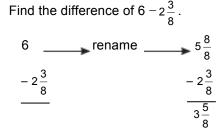
$$5\frac{19}{12} = 6\frac{7}{12}$$
 hours
So, $2\frac{5}{6} + 3\frac{3}{4} = 6\frac{7}{12}$.

In 1 through 6, find each sum. Simplify if possible.


7. Geometry Tirzah wants to put a fence around her garden. She has 22 yards of fence material. Does she have enough to go all the way around the garden?

Subtracting Mixed Numbers (12 – 9)

The Plainville Zoo has had elephants for $12\frac{4}{6}$ years. The zoo has had zebras for $5\frac{3}{6}$ years. How many years longer has the zoo had elephants?


Step 1: Write equivalent fractions with the least common denominator. You can use fraction strips.

Step 2: Find the difference of $12\frac{4}{6} - 5\frac{3}{6}$. Subtract the fractions. Then subtract the whole numbers. Simplify the difference if possible.

$$\frac{4}{6} - \frac{3}{6} = \frac{1}{6}$$

So, $12\frac{4}{6} - 5\frac{3}{6} = 7\frac{1}{6}$ years.

Example 2: Sometimes you may have to rename a fraction so you can subtract.

For **1** through **4**, find each difference. Simplify, if possible. Remember: You may have to rename a fraction in order to subtract.

- **5. Number Sense** To find the difference of $7 3\frac{5}{12}$ how do you rename the 7?
- **6.** Robyn ran $5\frac{3}{4}$ miles last week. She ran $4\frac{1}{4}$ miles this week. How many more miles did she run last week?

Decomposing and Composing Fractions (12 – 10)

Example 1

 $\frac{\frac{1}{9}}{\frac{+2}{9}}$ $\frac{3}{9} = \frac{1}{3} \text{ Rewrite } \frac{3}{9} \text{ as } \frac{1}{3}$

Example 2

 $\frac{1}{8} + \frac{3}{8} + \frac{5}{8} = \frac{9}{8} \text{ or } 1\frac{1}{8}$

Show another way to make this sum.

$$\frac{6}{8} + \frac{3}{8} = \frac{9}{8} = 1\frac{1}{8}$$

Add or subtract fractions and write answers in simplest form. For the addition problems, write another addition problem that has the same sum and uses two or more fractions.

1. $\frac{1}{4} + \frac{1}{4}$	2. $\frac{2}{3} - \frac{1}{3}$	3. $\frac{2}{8} + \frac{5}{8}$	4. $\frac{5}{6} - \frac{1}{6}$	5. $\frac{4}{12} + \frac{2}{12}$
6. $\frac{5}{6}$ $-\frac{2}{6}$	7. $\frac{3}{10}$ + $\frac{3}{10}$	8. $\frac{9}{10}$ $-\frac{3}{10}$	9. $\frac{3}{12}$ + $\frac{6}{12}$	10. $\frac{44}{100}$ $-\frac{24}{100}$

11. At lunch, Alice ate $\frac{3}{8}$ of her sandwich. Later, for a snack, she ate another $\frac{3}{8}$ of the sandwich. Write an addition sentence that shows how much of the sandwich Alice ate. Suppose Alice ate the same total amount of her sandwich at 3 different times instead of 2. Write an addition problem that shows the amount she ate as a sum of 3 fractions.

Problem Solving: Draw a Picture and Write an Equation (12 – 11)

Read and Understand	Pippa filled $\frac{1}{8}$ of a jar with blue stones, $\frac{2}{8}$ of the jar with yellow stones, and $\frac{4}{8}$ of the jar with purple stones. How much of the jar is filled in all? What do I know? Pippa filled $\frac{1}{8}$, $\frac{2}{8}$, and $\frac{4}{8}$ of a jar.		
	What am I asked to find? How much of the jar is filled with stones?		
Plan	Draw a picture and write an equation.		
	$\frac{\frac{1}{8}}{\frac{2}{8}} + \frac{\frac{2}{8}}{\frac{2}{8}} + \frac{\frac{4}{8}}{\frac{2}{8}}$		
Solve	Find equal fractions and add. Simplify if you need to.		
	$\frac{1}{8} + \frac{2}{8} + \frac{4}{8} = \frac{7}{8}$		
	$X = \frac{7}{8}$		
	Pippa filled the jar $\frac{7}{8}$ full of stones.		

Draw a picture and write an equation to solve.

- **1.** Joel walked $\frac{4}{12}$ of a mile to the store, $\frac{3}{12}$ of a mile to the library, and $\frac{2}{12}$ of a mile to the post office. Let *x* = the total distance Joel walked. How far did he walk?
- **2.** Midge walked $\frac{3}{4}$ mile Monday and $\frac{1}{4}$ mile Tuesday. Let *x* = how much farther she walked on Monday. How much farther did Midge walk on Monday?
- **3. Number Sense** Glenda wrote $\frac{2}{10}$ of her paper on Monday, $\frac{1}{10}$ of her paper on Tuesday, and $\frac{1}{10}$ of her paper on Wednesday. She said she wrote more than half of her paper. Is she correct? Why or why not?